Manuel A. Morales

Photo of Manuel A. Morales

Professor of Biology

413-597-2983
Thompson Biology Lab Rm 215
At Williams since 2001

Education

A.B. Kenyon College (1994)
Ph.D. University of Connecticut, Ecology (1999)

Areas of Expertise

Ecology, Mutualism, Statistical Modeling

Courses

BIOL 302 / ENVI 312 LEC

Communities and Ecosystems (not offered 2024/25)

BIOL 405 TUT

Sociobiology (not offered 2024/25)

BIOL 425 TUT

Coevolution (not offered 2024/25)

Scholarship/Creative Work

Selected Publications

(Full list available on Google Scholar)

  • Morales M.A., and A.G. Zink. 2017. Mechanisms of aggregation in an ant-tended treehopper: Attraction to mutualists is balanced by conspecific competition. PLoS ONE 12: e0181429. https://doi.org/10.1371/journal.pone.0181429
  • Ness, J.H., M.A. Morales, E. Kenison, E. Leduc*, P. Leipzig-Scott, E. Rollinson, and B.J. Swimm*. 2013. Reciprocally beneficial interactions between introduced plants and ants are induced by the presence of a third introduced species. Oikos. 122: 695-704. doi:10.1111/j.1600-0706.2012.20212.x
  • Morales, M.A. 2011. Model selection analysis of temporal variation in benefit for an ant-tended treehopper. Ecology. 92: 709-719. Abstract | PDF
  • Morales, M.A., J.L. Barone*, and C.S. Henry. 2008. Acoustic alarm signaling facilitates predator protection of treehoppers by mutualist bodyguards. Proceeding of the Royal Society B 275: 1935-1941. Abstract | PDF | HTML.
  • Morales, M.A., W. F. Morris, and W. G. Wilson. 2008. Allee dynamics generated by protection mutualisms can drive oscillations in trophic cascades. Theoretical Ecology 1: 77-88. Abstract | PDF | HTML.
  • Morales, M.A. and A.L.H. Beal*. 2006. The effects of host-plant quality and ant-tending for the treehopper Publilia concava. Annals of the Entomological Society of America 99: 545-552. Abstract | PDF
  • Inouye, D. W., M. A. Morales, and G. J. Dodge. 2002. Variation in timing and abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae): the roles of snowpack, frost, and La Niña, in the context of climate change. Oecologia 130: 543-550. Abstract (The original publication is available at springerlink.com)
  • Morales, M.A. 2000. Mechanisms and density-dependence of benefit in an ant-membracid mutualism. Ecology 81: 482-489. Abstract | PDF
  • Morales, M.A., and E.R. Heithaus.  1998. Seed dispersal mutualism shifts sex ratios in colonies of the ant, Aphaenogaster rudis. Ecology 79: 734-739. Abstract | PDF

* Denotes Williams College student

Professional Affiliations

  • University of Maryland: Postdoctoral fellow

Research Interests

The overarching goal of my research program has been to understand the ecological and evolutionary dynamics of mutualism. My research addresses this goal using a variety of study systems, but focusing on the interaciton between ants and the treehopper Publilia concava. In this mutualism, treehoppers feed on the phloem (sap) of the host-plant Tall Goldenrod (Solidago altissima) which is nitrogen poor and carbohydrate rich. Treehoppers filter large quantities of sap to meet their nutritional needs, and the carbohydrate-rich excrement (honeydew) is collected by ants as a food resource. In return, ants protect treehoppers from predators, and the act of removing honeydew facilitates feeding by treehoppers. Below, I highlight four projects that illustrate the breadth of my research program.

Tri-trophic population dynamics of mutualism

An NSF-funded project that I am involved in is to understand the consequences of mutualism in a community context. I have addressed this question using both modeling and empirical approaches. For example, a simple model of mutualism involving ants, treehoppers, treehopper predators, and host-plants shows that by reducing the impact of predators on treehoppers, protection by ants can allow treehoppers to overexploit their host plants. Thus, while ant protection can provide short term benefits, it can generate population cycles over the long term. Experiments testing these predictions showed that treehopper mothers avoid plants that were occupied by treehoppers in previous years, but with no apparent effect on survivorship. Future studies are planned to evaluate whether the disconnect between plant-quality and insect performance is a function of mothers following an ideal free distribution during oviposition (high-quality plants attract more herbivores thus canceling out heterogeneity in plant quality.

Population genetics of an ant-dependent herbivores

A second project that I have become interested in recently is the population genetics of the ant-protected herbivore, Publilia concava. In collaboration with Patrick Abbott from Vanderbilt University, we have developed 10 highly variable microsatellite loci for P. concava. Preliminary analyses, conducted in collaboration with Luana Maroja, have shown strong inbreeding in this species at the level of local patches, with moderate levels of population isolation between patches. Future studies are planned to further explore the underlying mechanisms driving these patterns.

The European Fire Ant

A third project that I am involved in is a collaboration with colleagues at Skidmore College and the University of Connecticut to assess the role of mutualism in the spread of invasive species. In the Spring of 2003, I discovered the invasive European Fire Ant (Myrmica rubra) in Williamstown MA, previously recorded outside of its native range almost exclusively along the coast of northern New England. Research in my lab found that this population of M. rubra appears to be concentrated along the Hoosic River watershed from North Adams, MA to Hoosic Falls, NY. Interestingly, the presence of this ant species is correlated with the abundance of a second invasive species, the plant Japanese knotweed. Japanese knotweed has extrafloral nectaries that attract ants who defend these plants against their natural enemies. While there are few herbivores of Japanese knotweed in its introduced range, a third invasive species, Japanese beetles, can inflict high levels of herbivory. In these cases, ants effectively defend plants from beetle herbivory. Ongoing research is aimed at identifying how mutualistic interactions can affect the population dynamics of participants in these invaded communities.

Interspecific Communication

A final area of my research is in exploring the role of interspecific communication in regulating the mutualism between ants and treehoppers – both ants and treehoppers are capable of producing substrate-borne vibration signals which can be thought of as “sound” that travels through plants. Results in my lab and in field experiments have shown approximately a two-fold reduction in the time taken until predator discovery by ants associated with the playback of treehopper alarm signals. Overall, our results show that P. concava treehoppers produce alarm signals in response to predator threat and that this signaling increases the efficacy of predator-protection by ants. Future studies are planned to evaluate these results in a phylogenetic context, and to characterize additional aspects of vibrational communication in these species.